Advanced Search
Your search resulted in 39 resourcesSort by
This Fact Sheet provides an overview of the Better Buildings Workforce Guidelines project. The Department of Energy (DOE) and the National Institute of Building Sciences (NIBS) are working with industry stakeholders to develop voluntary national guidelines that will improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs.
While the availability of “big data” about building energy performance is increasing in response to market demands and public policies, the lack of standard data formats is a significant ongoing barrier to its full utilization. To overcome this barrier, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) developed the Building Energy Data Exchange Specification (BEDES).
BEDES is designed to enable the exchange, comparison, and combination of empirical information by providing common terms and definitions for data about commercial and residential building’s physical and operational characteristics, energy use, and efficiency measures.
This paper describes the BEDES development process, scope, structure, and plans for implementation and ongoing updates.
The Smart Monitoring and Diagnostic System (SMDS) is a low-cost technology that helps building owners and managers keep rooftop air conditioner and heat pump units (RTUs) operating properly at peak efficiency. The SMDS technology has the potential to significantly benefit small commercial buildings, which predominately use RTUs for space conditioning. Through the Better Buildings Alliance, a field demonstration was conducted at four sites using two SMDS prototypes. This case study provides a summary of the field demonstration results.
The full report is available at: https://buildingdata.energy.gov/cbrd/resource/1927
THERM is a state-of-the-art computer program developed at Lawrence Berkeley National Laboratory (LBNL) for use by building component manufacturers, engineers, educators, students, architects, and others interested in heat transfer. Using THERM, you can model two-dimensional heat-transfer effects in building components such as windows, walls, foundations, roofs, and doors; appliances; and other products where thermal bridges are of concern. THERM's heat-transfer analysis allows you to evaluate a product's energy efficiency and local temperature patterns, which may relate directly to problems with condensation, moisture damage, and structural integrity.
Work with the buildings industry to develop and maintain data, methods, and tools to understand and improve the sustainability of buildings at a fundamental level and continue to develop and support the U.S. Life Cycle Inventory (LCI) Database, which provides the starting point for LCA.
The Building Controls Virtual Test Bed (BCVTB) is a software environment that allows expert users to couple different simulation programs for co-simulation, and to couple simulation programs with actual hardware. For example, the BCVTB allows to simulate a building in EnergyPlus and the HVAC and control system in Modelica, while exchanging data between the software as they simulate. The BCVTB allows expert users of simulation to expand the capabilities of individual programs by linking them to other programs. Due to the different programs that may be involved in distributed simulation, familiarity with configuring programs is essential.