This guide was created to help healthcare facility decision-makers plan, design, and implement energy improvement projects in their facilities. It was designed with energy managers in mind, and presents practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle.
Advanced Search
Your search resulted in 8 resourcesSort by
The Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities can help in the design of new healthcare facilities that are 30% more energy efficient than current industry standards using ANSI/ASHRAE/IESNA Standard 90.1-1999 as a benchmark. This saves energy but also supports the other design goals important to healthcare facilities: to improve the patient experience, enhance the healing environment, increase staff retention, lower construction and operating costs, contribute to an environmentally conscious building design, and improve the bottom-line performance of the healthcare facility.
The purpose of this handbook is to furnish guidance for planning and conducting a highperformance building charrette, sometimes called a "greening charrette." The handbook answers typical questions such as, "What is a charrette?", "Why conduct a charrette?", "What topics should we cover?", "Whom should we invite?" and "What happens after the charrette?". Owners, design team leaders, site planners, state energy office staff, and others who believe a charrette will benefit their projects will find the handbook helpful.
This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration in order to achieve aggressive energy savings in building designs. Through a case study example, we examine the ways daylighting – and daylighting simulation – drove the design of a large net-zero energy project.
It is still early in the collection and analysis of energy performance data, but it is already clear that high-performance commercial buildings—some "almost net-zero buildings"—can be constructed cost effectively, providing productive environments for occupants, reducing operating costs, and enhancing the competitiveness of commercial properties.