Energy savings can be achieved in corridors and other secondary spaces with an occupancy-based adaptive lighting system. Such a system is generally composed of occupancy sensors, dimmable ballasts and a communication platform. The system automatically lowers light levels to the minimum footcandles required by safety codes during vacancy and raises light output to the recommended level for occupant comfort during occupied periods. The adaptive lighting system installed at the Latham Square office building is based on Lutron’s Energi TriPak solution, a stand-alone platform for adaptive lighting that employs cost-effective wireless control devices and programmable dimming ballasts.
Advanced Search
Your search resulted in 5 resourcesSort by
The California Lighting Technology Center partnered with Finelite, Inc. and Adura Technologies to develop and demonstrate a unique, wireless task/ambient office lighting solution ideally suited for the retrofit market. The system consists of two key elements: a task/ambient lighting system and advanced, wireless lighting controls. The combination substantially reduce energy use and improves lighting quality, and provides personal lighting control for individual work spaces, and does not require additional wiring or rewiring of existing luminaries or lighting circuits. The system has three specific components: adaptive ambient lighting, light-emitting diode task lighting, and wireless controls.
To maximize the respective benefits of open- and closed-loop systems, and minimize their limitations, the California Lighting Technology Center (CLTC) developed a dual-loop photosensor control system for skylight applications. The system features a control algorithm that monitors the open- and closed-loop photosensors and controls the electric light to provide the designed light level. It also automatically recalibrates nightly to adjust to long-term changes to the interior space. Results show the dual-loop technology delivers more consistent lighting and greater energy savings.
The California Energy Commission’s Public Interest Energy Research (PIER) program sponsored development of bi-level parking garage luminaires for the University of California, Davis that integrate intelligent controls with bi-level electronic drivers or ballasts to control light output based on garage occupancy. Luminaires operate at a reduced level during vacancy and switch to full light output upon occupancy. Many of the products may be combined with traditional photocontrols to maximize energy savings.
The PIER Demonstration program partnered with the University of California, Davis to demonstrate new construction and retrofit design strategies that provide dual light levels based on occupancy sensing that is appropriate for the interior corridor application. This demonstration project consists of a one-to-one retrofit of existing fluorescent luminaires with either new fixtures or new components for three corridor areas in Bainer Hall. This project is intended to demonstrate the energy savings that can be achieved by using occupancy-based controls for interior corridor applications.