Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
Advanced Search
Your search resulted in 18 resourcesSort by
This report discusses miscellaneous electrical loads, which are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption.
Conventional information technology (IT) equipment and data center spaces can consume more than 100 times the energy of standard office spaces, so the potential for energy savings is huge. You can use this application guide to reduce your equipment energy consumption in any building with a data center, server closets, or other IT equipment (computers, printers, etc.). Some of these strategies are most effective at the beginning of the design process; others can be implemented at any time and be sequenced as part of the normal procurement and replacement schedule.
The Research Support Facility complex (RSF, RSF II, parking garage, and associated site lighting) was designed to produce more on-site renewable energy than it uses over the course of a typical weather year, when accounted for at the site. To date, the end use performance monitoring and verification suggests that when the RSF complex is fully built out, we will meet the annual energy use goals. Continued performance monitoring and occupant education are required to ensure annual energy use goals will continue to be met.
This resource provides energy models from the Advanced Energy Design Guide (AEDG) for K-12 Schools that have been incorporated into Building Component Library (BCL). The AEDG series provides design guidance for buildings that use 50% less energy than those built to the requirements of the ANSI/ASHRAE/IES Standard 90.1-2004 commercial code, and are specific to prominent building types across each of the eight U.S. climate zones. More information on the AEDGs can be found at http://energy.gov/eere/buildings/advanced-energy-design-guides and http://www.ashrae.org/aedg. The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. More information about the BCL can be found at https://bcl.nrel.gov.
These models are EnergyPlus version 7.0 and were completed in 2011. A Technical Support Document (TSD) that details these models can be found at http://www.nrel.gov/docs/fy13osti/51437.pdf. This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).