The purpose of this handbook is to furnish guidance for planning and conducting a highperformance building charrette, sometimes called a "greening charrette." The handbook answers typical questions such as, "What is a charrette?", "Why conduct a charrette?", "What topics should we cover?", "Whom should we invite?" and "What happens after the charrette?". Owners, design team leaders, site planners, state energy office staff, and others who believe a charrette will benefit their projects will find the handbook helpful.
Advanced Search
Your search resulted in 7 resourcesSort by
This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration in order to achieve aggressive energy savings in building designs. Through a case study example, we examine the ways daylighting – and daylighting simulation – drove the design of a large net-zero energy project.
It is still early in the collection and analysis of energy performance data, but it is already clear that high-performance commercial buildings—some "almost net-zero buildings"—can be constructed cost effectively, providing productive environments for occupants, reducing operating costs, and enhancing the competitiveness of commercial properties.
Miscellaneous electrical loads (MELs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage MELs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for MELs control, and is using this process to evaluate a range of technologies for active MELs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.