Bank of America partnered with DOE's Commercial Building Partnerships (CBP) Program to develop and implement solutions to build a new bank branch in Punta Gorda, Florida, with a goal of being at least 50% below ASHRAE Standard 90.1-2004. The branch opened in October 2011 and achieved actual energy savings of 47%.
Advanced Search
Your search resulted in 10 resourcesSort by
PNC Financial Services partnered with DOE's Commercial Building Partnerships (CBP) Program to develop and implement solutions to retrofit its existing Singer Island, Florida, branch to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2004. Construction was completed in January 2012.
This paper reviews the novel procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners (who are also commercial building energy efficiency researchers) developed and implemented an energy performance based design-build process to procure an office building with contractual requirements to meet demand side energy and LEED goals. The key procurement steps needed to ensure achievement of the energy efficiency and ZEB goals using a replicable delivery process are outlined.
Low energy or high-performance buildings form a vital component in the sustainable future of building design and construction. Rigorous integrated daylighting design and simulation will be critical to their success as energy efficiency becomes a requirement, because electric lighting usually represents a large fraction of the energy consumed. We present the process and tools used to design the lighting systems in the newest building at the National Renewable Energy Laboratory (NREL), the Research Support Facility (RSF). Daylighting had to be integrated with the electric lighting, as low energy use (50% below ASHRAE 90.1-2004) and the LEED daylight credit were contractually required, with a reach goal of being a net-zero energy building (NZEB). The oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed, as ultimately all simulation efforts had to translate to energy use intensity predictions, design responses, and preconstruction substantiation of the design. We present preliminary data from the postoccupancy monitoring efforts with an eye toward the current efficacy of energy and lighting simulation methodologies.
Energy savings can be achieved in corridors and other secondary spaces with an occupancy-based adaptive lighting system. Such a system is generally composed of occupancy sensors, dimmable ballasts and a communication platform. The system automatically lowers light levels to the minimum footcandles required by safety codes during vacancy and raises light output to the recommended level for occupant comfort during occupied periods. The adaptive lighting system installed at the Latham Square office building is based on Lutron’s Energi TriPak solution, a stand-alone platform for adaptive lighting that employs cost-effective wireless control devices and programmable dimming ballasts.
The California Lighting Technology Center partnered with Finelite, Inc. and Adura Technologies to develop and demonstrate a unique, wireless task/ambient office lighting solution ideally suited for the retrofit market. The system consists of two key elements: a task/ambient lighting system and advanced, wireless lighting controls. The combination substantially reduce energy use and improves lighting quality, and provides personal lighting control for individual work spaces, and does not require additional wiring or rewiring of existing luminaries or lighting circuits. The system has three specific components: adaptive ambient lighting, light-emitting diode task lighting, and wireless controls.
In 2012, University of California Davis upgraded its exterior lighting as part of the university’s Smart Lighting Initiative. Wall packs on campus, like other exterior lighting fixtures, were retrofitted with dimmable LED sources, motion sensors, and wireless controls. This allowed the units to be incorporated into an adaptive campus-wide lighting control system. The system offers an intelligent, networked approach to lighting and energy management with improved lighting quality and optimal energy efficiency.
In the summer of 2010 the California Lighting Technology Center (CLTC) and Philips Hadco produced a bi-level solution that combined a dimmable LED source and a mounting collar equipped with occupancy sensors. The collar provides 360-degree occupancy sensor coverage. This demonstration involved whole-head replacement of the existing luminaires, but results could also be achieved with a retrofit kit. The new luminaires feature good color quality, improved efficiency and a longer lifespan. Adaptive controls enable the bi-level luminaires to reduce power to 50% during vacant periods and increase to 100% light output when occupants approach. Switching between the two light levels maintains adequate light for security and wayfinding while maximizing energy savings.
Sinisa Novakovic, owner of Mishka’s café in downtown Davis, had two goals for the recent lighting upgrade in his café: create a cozy, inviting atmosphere for customers and save energy. In the main seating area alone he was able to cut his lighting energy use 85% by upgrading to LED lighting. Throughout the rest of the café, energy consumption for lighting has been cut in half, reducing Mishka’s annual energy use by over 10,000 kWh and saving Novakovic nearly $2,000 every year in energy costs. The lighting upgrade will have paid for itself after just eight months.