Older, inefficient commercial rooftop unit (RTU) air conditioning systems are common and can waste from $1,000 to $3,700 per unit annually, depending on the building size and type. By replacing or retrofitting them, you can save money, improve your energy efficiency, make your building more comfortable, and help the environment. The Advanced RTU Campaign (ARC) encourages commercial building owners and operators to replace their old RTUs with more efficient units or to retrofit their RTUs with advanced controls in order to take advantage of these benefits. This website shows updates to the campaign including resources and progress towards the campaign's goal.
Advanced Search
Your search resulted in 16 resourcesSort by
Case study describing how adidas implemented a best practice of a planned replacement program for its rooftop units (RTUs), which resulted in significant cost and energy savings. The case study outlines the planning process, implementation, results, and the future plans of their RTU replacement program.
This document provides facility managers and building owners with an introduction to measurement and verification (M&V) methods to estimate energy and cost savings of rooftop units replacement or retrofit projects. The M&V methods presented here are helpful in estimating paybacks to justify future projects.
This checklist will assist facility managers and building owners evaluate the capabilities of HVAC companies and the proposals they submit for installation of new HVAC equipment. The questions on the checklist will help owners and managers understand the requirements contained within the ACCA HVAC quality installation Standard 5.
This case study details the very successful Walgreens proactive RTU replacement program that has resulted in 50% efficiency improvements. The streamlined process allows Walgreens to reduce installed cooling capacity, increase RTU efficiency, provide improved service, and reduce overall costs compared to emergency replacements.
In FY14, BTO funded PNNL to develop and integrate AFDD methods for both air-side and refrigerant-side fault detection and diagnostics with one of the leading advanced RTU controllers sold in the market today. The work also includes testing and validating the integrated solution in the field. If the results from the field demonstrations show reliable fault diagnostics, it will encourage utilities to provide incentives to pursue the integrated technology because it makes the retrofit controller more cost effective and could make market adoption of the retrofit controller even more attractive to building owners.
Seven AFDD algorithms were developed, deployed and tested on the RTU controller for detecting and diagnosing faults with RTU economizer and ventilation operations using sensors that are commonly installed for advanced control purposes.
This multimedia toolkit is designed to guide energy efficiency program administrators through the process of planning, implementing and measuring a large-scale, deep retrofit energy efficiency program for small-to-medium businesses (SMB). We provide downloadable tools and forms you can adapt for use in your own program.
This guidebook is a reference to help other program sponsors and implementers develop and deliver a full-scale and comprehensive small-to-medium-sized business (SMB) energy efficiency program that can achieve similar results. The online SMART Scale Toolkit accompanies this guidebook.
A demonstration of the SMART Scale model in the Sacramento Municipal Utilities District (SMUD) on over 700 projects indicates that an average whole building electricity savings of 20% from the baseline is possible while remaining cost-effective, with a cost of $0.0346 per lifetime kWh and an estimated total resource cost of 3.1. Previous generations of DI programs were capturing only 10% to 12% of whole building electricity savings through approaches dominated by lighting measures.
This guide primarily applies to facility managers and energy managers of large existing office buildings larger than 100,000 square feet, but also includes considerations for small and medium office buildings. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, this guide provides a practical roadmap for effectively planning and implementing performance improvements for existing buildings.