This guide focuses on clean energy financing options for school administrators, facility managers, and other K-12 school decision makers who are considering investments in high performance school projects. This guide explicitly focuses on comprehensive energy upgrades, those that involve multiple measures and are targeted toward achieving significant energy savings. Successful implementation of clean energy upgrades in schools is a matter of understanding the opportunity, making the commitment, and creatively tapping into available financing. This guide attempts to provide the foundation needed for successful projects in U.S. schools. It walks through the financing options available to K-12 schools and provides case studies of six school districts from around the country.
Advanced Search
Your search resulted in 11 resourcesSort by
"Education for Sustainability (EfS) empowers students to make decisions that balance the need to preserve healthy ecosystems with the need to promote vibrant economies and equitable social systems for all generations to come. Through a variety of EfS approaches, schools across the country and at all grade levels are currently satisfying curricular and achievement requirements and providing learning experiences that prepare students for the world they will inherit."
Presentation at CxEnergy 2014 conference by Hanson, Inc. the commissioning agent for Sandy Grove Middle School. Sandy Grove, in Lumber Bridge, NC, is the first Zero Energy school built with a public-private partnership in the U.S.. Presentation includes technologies used, benefits of Zero Energy, common issues with the technologies they used, and lessons learned.
"Investments in our school buildings are a “triple win” for communities. This guide builds the case for a range of strategic school building improvements that can help communities address the greatest challenges facing our school facilities in cross-cutting fashion. We define opportunities and strategies that all communities can leverage to build a case for real change in their schools."
This guide was created to help healthcare facility decision-makers plan, design, and implement energy improvement projects in their facilities. It was designed with energy managers in mind, and presents practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle.
The Advanced Energy Retrofit Guide for K-12 Schools is one of five retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures, the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The K-12 Schools guide provides convenient and practical guidance for making cost-effective energy efficiency improvements in public, private, and parochial schools.
This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).
To maximize the respective benefits of open- and closed-loop systems, and minimize their limitations, the California Lighting Technology Center (CLTC) developed a dual-loop photosensor control system for skylight applications. The system features a control algorithm that monitors the open- and closed-loop photosensors and controls the electric light to provide the designed light level. It also automatically recalibrates nightly to adjust to long-term changes to the interior space. Results show the dual-loop technology delivers more consistent lighting and greater energy savings.
In 2012, University of California Davis upgraded its exterior lighting as part of the university’s Smart Lighting Initiative. Wall packs on campus, like other exterior lighting fixtures, were retrofitted with dimmable LED sources, motion sensors, and wireless controls. This allowed the units to be incorporated into an adaptive campus-wide lighting control system. The system offers an intelligent, networked approach to lighting and energy management with improved lighting quality and optimal energy efficiency.