Advanced Search
Your search resulted in 7 resourcesSort by
This guide primarily applies to facility managers and energy managers of large existing office buildings larger than 100,000 square feet, but also includes considerations for small and medium office buildings. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, this guide provides a practical roadmap for effectively planning and implementing performance improvements for existing buildings.
Retail buildings in the U.S. are second only to office buildings in total energy consumption and represent approximately 13% of energy use in commercial buildings nationwide. The Advanced Energy Retrofit Guide for Retail Buildings presents general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures to provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. This guide is primarily designed for facility managers and energy managers of existing retail buildings of all sizes.
This guide was created to help healthcare facility decision-makers plan, design, and implement energy improvement projects in their facilities. It was designed with energy managers in mind, and presents practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle.
The Advanced Energy Retrofit Guide for Grocery Stores was created to help grocery store decision makers plan, design, and implement energy improvement projects in their facilities. It was designed with energy managers in mind, and presents practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle.
The Advanced Energy Retrofit Guide for K-12 Schools is one of five retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures, the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The K-12 Schools guide provides convenient and practical guidance for making cost-effective energy efficiency improvements in public, private, and parochial schools.
Miscellaneous electrical loads (MELs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage MELs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for MELs control, and is using this process to evaluate a range of technologies for active MELs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.