Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
Advanced Search
Your search resulted in 11 resourcesSort by
7x7x7: Design Energy Water is an innovative program by the Division of the State Architect that encouraged California school districts to develop long-range master plans that reduce energy and water consumption on campuses and improve the quality of educational spaces. The State Architect engages seven architectural firms to develop seven conceptual case studies that reduce school energy and water consumption and result in better learning environments on seven different types of campuses (six K-12 schools and a community college). The seven campuses are representative of typical building types from different eras constructed across California’s varied climate zones. The purpose and primary goal of this program is to enable all existing K-14 facilities to be zero energy by 2030.
The Advanced Energy Retrofit Guide for K-12 Schools is one of five retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures, the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The K-12 Schools guide provides convenient and practical guidance for making cost-effective energy efficiency improvements in public, private, and parochial schools.
This paper documents the methodology developed to identify and reduce plug and process loads (PPLs) as part of NREL's Research Support Facility's (RSF) low energy design process. PPLs, including elevators, kitchen equipment in breakrooms, and office equipment in NREL’s previously occupied office spaces were examined to determine a baseline. This, along with research into the most energy-efficient products and practices, enabled the formulation of a reduction strategy that should yield a 47% reduction in PPLs. The building owner and the design team played equally important roles in developing and implementing opportunities to reduce PPLs. Based on the work done in the RSF, a generalized multistep process has been developed for application to other buildings.
This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools—Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School—and one major renovation, Joseph A. Craig Elementary School—are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates.
Miscellaneous electrical loads (MELs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage MELs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for MELs control, and is using this process to evaluate a range of technologies for active MELs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.