Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
Advanced Search
Your search resulted in 19 resourcesSort by
This guide covers each major step in procuring a solar photovoltaic (PV) system:
- Conducting technical and financial studies
- Financing a PV system
- Procurement
- Project execution
- Operations and maintenance
- Assessing benefits
The guide provides information on the basic steps, key considerations, and where to go for more information. It is intended to provide an overview and some level of detail, with pointers to highly detailed information and resources.
On December 6, 2016, the U.S. Department of Energy announced the launch of a new partnership to jump-start zero energy schools across the country. The Zero Energy Schools Accelerator enables states and school districts alike to design, construct, and operate these cutting-edge, energy-saving schools. This press release highlights the importance of the Accelerator by featuring a completed zero energy school, Discovery Elementary in Arlington, Virginia.
"This study, commissioned by the Continental Automated Buildings Association (CABA), and conducted by the New Buildings Institute (NBI), details how existing and emerging building monitoring and control technologies are helping designers, owners, operators and occupants achieve and maintain zero net energy (ZNE) buildings."
7x7x7: Design Energy Water is an innovative program by the Division of the State Architect that encouraged California school districts to develop long-range master plans that reduce energy and water consumption on campuses and improve the quality of educational spaces. The State Architect engages seven architectural firms to develop seven conceptual case studies that reduce school energy and water consumption and result in better learning environments on seven different types of campuses (six K-12 schools and a community college). The seven campuses are representative of typical building types from different eras constructed across California’s varied climate zones. The purpose and primary goal of this program is to enable all existing K-14 facilities to be zero energy by 2030.