On December 6, 2016, the U.S. Department of Energy announced the launch of a new partnership to jump-start zero energy schools across the country. The Zero Energy Schools Accelerator enables states and school districts alike to design, construct, and operate these cutting-edge, energy-saving schools. This press release highlights the importance of the Accelerator by featuring a completed zero energy school, Discovery Elementary in Arlington, Virginia.
Advanced Search
Your search resulted in 6 resourcesSort by
7x7x7: Design Energy Water is an innovative program by the Division of the State Architect that encouraged California school districts to develop long-range master plans that reduce energy and water consumption on campuses and improve the quality of educational spaces. The State Architect engages seven architectural firms to develop seven conceptual case studies that reduce school energy and water consumption and result in better learning environments on seven different types of campuses (six K-12 schools and a community college). The seven campuses are representative of typical building types from different eras constructed across California’s varied climate zones. The purpose and primary goal of this program is to enable all existing K-14 facilities to be zero energy by 2030.
This multimedia toolkit is designed to guide energy efficiency program administrators through the process of planning, implementing and measuring a large-scale, deep retrofit energy efficiency program for small-to-medium businesses (SMB). We provide downloadable tools and forms you can adapt for use in your own program.
This guidebook is a reference to help other program sponsors and implementers develop and deliver a full-scale and comprehensive small-to-medium-sized business (SMB) energy efficiency program that can achieve similar results. The online SMART Scale Toolkit accompanies this guidebook.
A demonstration of the SMART Scale model in the Sacramento Municipal Utilities District (SMUD) on over 700 projects indicates that an average whole building electricity savings of 20% from the baseline is possible while remaining cost-effective, with a cost of $0.0346 per lifetime kWh and an estimated total resource cost of 3.1. Previous generations of DI programs were capturing only 10% to 12% of whole building electricity savings through approaches dominated by lighting measures.
It is possible for K–12 new construction projects to achieve zero energy in all climate zones throughout the continental United States. This study includes:
• Energy use intensity (EUI) targets for all climate zones (Tables 23-26) to help users set goals for their zero energy school designs.
• A pathway for how to achieve these EUIs by climate zone, including values for the building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outdoor air treatment, and SWH.
• Case studies of actual K–12 school applications which demonstrate the business case and practicality of achieving zero energy schools.
This feasibility study was developed with input and guidance from a panel of industry experts. In many ways, this feasibility study is a simple interface to a complex analysis performed using EnergyPlus energy modeling. The combination of strategies contained in a single table should help facilitate increased energy efficiency in new buildings.