Advanced Search
Your search resulted in 3 resourcesSort by
The General Service Administration's (GSA) Green Proving Ground (GPG) program worked with a team from the National Renewable Energy Laboratory (NREL) to identify buildings with office setups and equipment distributions typical of the wider GSA building stock. Eight buildings from GSA’s Mid-Atlantic Region, where plug loads average 21%, were selected. In each building, approximately 12 standard power strips with no control capability (the incumbent technology) were replaced with APSs, which monitored and provided power to an array of devices. More than 295 devices were monitored during the study, which consisted of three separate test periods, each four weeks in length. All buildings selected had workstation power management in place.
Miscellaneous electrical loads (MELs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage MELs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for MELs control, and is using this process to evaluate a range of technologies for active MELs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.