This report describes the psychrometric bin analysis that was conducted for the ASHRAE recommended and allowable operating environment zones as well as a modified allowable operating environment, discusses control strategies, and presents examples of energy-efficient data centers using alternative cooling strategies.
Advanced Search
Your search resulted in 6 resourcesSort by
Over the course of 5 years, NREL worked with commercial building owners and their design teams in the DOE Commercial Building Partnerships (CBP) to cut energy consumption by 50% in new construction (versus code) and by 30% in existing building pilot projects (versus code or pre-retrofit operational energy use depending on the preference of the Partner) using strategies that could be replicated across their building portfolios. A number of different building types were addressed, including supermarket, retail merchandise, combination big box (general merchandise and food sales), high rise office space, and warehouse. The projects began in pre-design and included a year of measurement data to evaluate performance against design expectations. Focused attention was required throughout the entire process to achieve a design with the potential to hit the energy performance target and to operate the resulting building to reach this potential. This paper will report quantitative results and cover both the technical and the human sides of CBP, including the elements that were required to succeed and where stumbling blocks were encountered. It will also address the impact of energy performance goals and intensive energy modeling on the design process innovations and best practices.
The PIER Demonstration program partnered with the University of California, Davis to demonstrate new construction and retrofit design strategies that provide dual light levels based on occupancy sensing that is appropriate for the interior corridor application. This demonstration project consists of a one-to-one retrofit of existing fluorescent luminaires with either new fixtures or new components for three corridor areas in Bainer Hall. This project is intended to demonstrate the energy savings that can be achieved by using occupancy-based controls for interior corridor applications.
This guide was sponsored by the California Energy Commission and developed by the California Lighting Technology Center at UC Davis. It is intended to be used as a supplement for the 2008 Residential Compliance Manual. It is a resource to help contractors, designers, and builders understand the 2008 Title 24 Building Energy Efficiency Standards and how to integrate these changes into new home plans. This guide consists of two key sections: the Technology Overview and the Lighting Design Guide.
Adaptive exterior lighting is a relatively new concept recognized by the lighting industry and energy regulators as a potential method to increase energy savings in outdoor applications. Many adaptive exterior lighting products are being developed and have been introduced into the marketplace, allowing users to implement dynamic lighting designs that offer 30%–75% energy savings over traditional systems. These savings are achieved by coupling advanced lighting controls with an efficacious, dimmable source.
The California Energy Commission’s Public Interest Energy Research (PIER) Program sponsors the development and demonstration of energy-efficient building technologies. Over the past several years, PIER has developed strategic partnerships with the University of California, California State University, California Community Colleges, and California Department of General Services. These partnerships include a series of demonstration projects coupled with programmatic support to ensure continued deployment of energy-efficient technologies and practices across California. Examples of the latest energy-efficient innovations are described.