Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
Advanced Search
Your search resulted in 6 resourcesSort by
The Advanced Energy Retrofit Guide for K-12 Schools is one of five retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures, the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The K-12 Schools guide provides convenient and practical guidance for making cost-effective energy efficiency improvements in public, private, and parochial schools.
This paper documents the methodology developed to identify and reduce plug and process loads (PPLs) as part of NREL's Research Support Facility's (RSF) low energy design process. PPLs, including elevators, kitchen equipment in breakrooms, and office equipment in NREL’s previously occupied office spaces were examined to determine a baseline. This, along with research into the most energy-efficient products and practices, enabled the formulation of a reduction strategy that should yield a 47% reduction in PPLs. The building owner and the design team played equally important roles in developing and implementing opportunities to reduce PPLs. Based on the work done in the RSF, a generalized multistep process has been developed for application to other buildings.