This checklist packet is a team-focused guide to realizing energy savings in high-performance office buildings through carefully considered lighting and control design. The checklists should be distributed among the integrated project team, including the owner, lighting designer and engineer, commissioning agent, and facility manager, at the beginning of a project and referred to regularly during design meetings and drawing reviews.
Advanced Search
Your search resulted in 13 resourcesSort by
Conventional information technology (IT) equipment and data center spaces can consume more than 100 times the energy of standard office spaces, so the potential for energy savings is huge. You can use this application guide to reduce your equipment energy consumption in any building with a data center, server closets, or other IT equipment (computers, printers, etc.). Some of these strategies are most effective at the beginning of the design process; others can be implemented at any time and be sequenced as part of the normal procurement and replacement schedule.
Small buildings have been left behind in the energy efficiency marketplace because financial and technical resources have flowed to larger commercial buildings (PGL 2013). DOE’s Building Technologies Office (BTO) works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in existing and new commercial buildings (DOE 2013). BTO recognizes the SBSP sector’s potential for significant energy savings and the need for investments in resources that are tailored to this sector’s unique needs. The industry research and recommendations described in this report identify potential approaches and strategic priorities that BTO could explore over the next 3–5 years that will support the implementation of high-potential energy efficiency opportunities for this important sector.
This document provides an example request for proposal (RFP) for a Department of Energy (DOE) and National Renewable Energy Laboratory (NREL) Ingress/Egress Project with a Site Entrance Building and Parking Structure. The RFP has been annotated by NREL to demonstrate the project’s steps that follow NREL and DOE’s Energy-Performance-Based Acquisition process.
This document provides an example request for proposal (RFP) for the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory Science and User Support Building. The RFP has been annotated by the National Renewable Energy Lab (NREL) to demonstrate the project’s steps that follow NREL and DOE’s Energy-Performance-Based Acquisition process.
This document created by Gensler for the University of California San Francisco (UCSF) provides an example request for proposal (RFP) for an academic office building. The RFP has been annotated by the National Renewable Energy Lab (NREL) to demonstrate the project’s steps that follow NREL and DOE’s Energy-Performance-Based Acquisition process.
This document provides an example request for proposal (RFP) created by the U.S. Army Corps of Engineers, Omaha District in June 2012 for Fort Carson Net Zero Army Barracks. The RFP has been annotated by the National Renewable Energy Lab (NREL) to demonstrate the project’s steps that follow NREL and DOE’s Energy-Performance-Based Acquisition process.
This guide presents a set of 15 best practices for owners, designers, and construction teams to reach high-performance goals and maintain a competitive budget. They are based on the recent experiences of the Research Support Facility owner and design-build team, and show that achieving this outcome requires that all key integrated team members understand their opportunities to control capital costs.
This guide primarily applies to facility managers and energy managers of large existing office buildings larger than 100,000 square feet, but also includes considerations for small and medium office buildings. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, this guide provides a practical roadmap for effectively planning and implementing performance improvements for existing buildings.
Retail buildings in the U.S. are second only to office buildings in total energy consumption and represent approximately 13% of energy use in commercial buildings nationwide. The Advanced Energy Retrofit Guide for Retail Buildings presents general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures to provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. This guide is primarily designed for facility managers and energy managers of existing retail buildings of all sizes.