This checklist packet is a team-focused guide to realizing energy savings in high-performance office buildings through carefully considered lighting and control design. The checklists should be distributed among the integrated project team, including the owner, lighting designer and engineer, commissioning agent, and facility manager, at the beginning of a project and referred to regularly during design meetings and drawing reviews.
Advanced Search
Your search resulted in 14 resourcesSort by
Conventional information technology (IT) equipment and data center spaces can consume more than 100 times the energy of standard office spaces, so the potential for energy savings is huge. You can use this application guide to reduce your equipment energy consumption in any building with a data center, server closets, or other IT equipment (computers, printers, etc.). Some of these strategies are most effective at the beginning of the design process; others can be implemented at any time and be sequenced as part of the normal procurement and replacement schedule.
This dynamic document provides background information to any potential audience of building re-tuning training. This document provides background information specifically geared toward small- to medium-sized commercial building operations. It introduces basic building energy terminology associated with building energy use to “prime” targeted participants to get the most out of the building re-tuning training. The intent is for participants who are less familiar with the concepts to review this material before taking the building re-tuning training class.
The primary audience for this instructor manual is the person who will be teaching the re-tuning course. In addition, community college instructors, retro-commissioning training providers and building operator training providers may find value in the material presented in this instructor manual as well. The purpose of this course is to help building operations staff to learn how to operate buildings more efficiently, reduce operating cost and provide energy savings. The knowledge and skills learned through the training will be highly valued by organizations and companies seeking to improve the performance of their buildings. Provides additional information on what to highlight in each of the small building re-tuning slides.
The primary audience for this instructor manual is the person who will be teaching the re-tuning course. In addition, community college instructors, retro-commissioning training providers and building operator training providers may find value in the material presented in this instructor manual as well. The purpose of this course is to help building operations staff to learn how to operate buildings more efficiently, reduce operating cost and provide energy savings. The knowledge and skills learned through the training will be highly valued by organizations and companies seeking to improve the performance of
their buildings.
The intent of this user guide is to provide a description of the functionality of the Energy Charting and Metrics plus Building Re-tuning and Measurement and Verification (ECAM+) tool. ECAM+ facilitates the charting and analysis of energy use and point-level data from utility meters, building automation systems (BASs), and data loggers. This document describes the tool’s general functions and features, including installation, use, guidance, and limitations.The Energy Charting and Metrics Tool (ECAM) is an add-on for Microsoft Excel® which was developed to facilitate analysis of data from building (energy and other data). Key features of ECAM+ include the creation of charts to help re-tuning.
The Universal Translator (UT) is a tool that assists in processing and merging data that has non-uniform time intervals or is stored in multiple excel (csv) files. The user guide shows the user where to download the program (UT program) and gives examples of importing, merging, and exporting the data that is compatible with ECAM.
This guide presents a set of 15 best practices for owners, designers, and construction teams to reach high-performance goals and maintain a competitive budget. They are based on the recent experiences of the Research Support Facility owner and design-build team, and show that achieving this outcome requires that all key integrated team members understand their opportunities to control capital costs.
This guide primarily applies to facility managers and energy managers of large existing office buildings larger than 100,000 square feet, but also includes considerations for small and medium office buildings. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, this guide provides a practical roadmap for effectively planning and implementing performance improvements for existing buildings.