Advanced Search
Your search resulted in 4 resourcesSort by
This multimedia toolkit is designed to guide energy efficiency program administrators through the process of planning, implementing and measuring a large-scale, deep retrofit energy efficiency program for small-to-medium businesses (SMB). We provide downloadable tools and forms you can adapt for use in your own program.
This guidebook is a reference to help other program sponsors and implementers develop and deliver a full-scale and comprehensive small-to-medium-sized business (SMB) energy efficiency program that can achieve similar results. The online SMART Scale Toolkit accompanies this guidebook.
A demonstration of the SMART Scale model in the Sacramento Municipal Utilities District (SMUD) on over 700 projects indicates that an average whole building electricity savings of 20% from the baseline is possible while remaining cost-effective, with a cost of $0.0346 per lifetime kWh and an estimated total resource cost of 3.1. Previous generations of DI programs were capturing only 10% to 12% of whole building electricity savings through approaches dominated by lighting measures.
Miscellaneous electrical loads (MELs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage MELs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for MELs control, and is using this process to evaluate a range of technologies for active MELs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.