Advanced Search
Your search resulted in 11 resourcesSort by
This Fact Sheet provides an overview of the Better Buildings Workforce Guidelines project. The Department of Energy (DOE) and the National Institute of Building Sciences (NIBS) are working with industry stakeholders to develop voluntary national guidelines that will improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs.
The lack of empirical data on the energy performance of buildings is a key barrier to accelerating the energy efficiency retrofit market. The DOE’s Buildings Performance Database (BPD) helps address this gap by allowing users to perform exploratory analyses on an anonymous dataset of hundreds of thousands of commercial and residential buildings. These analyses enable market actors to assess energy efficiency opportunities, forecast project performance, and quantify performance risk using empirical building data. In this paper, we describe the process of collecting and preparing data for the database, and present a peer-group analysis tool that allows users to analyze building performance for narrowly defined subsets of the database, or peer groups. We use this tool to explore a case study of a multifamily portfolio owner comparing his buildings’ performance to the peer group of multifamily buildings in the local metro area. We also present a performance comparison tool that uses statistical methods to estimate the expected change in energy performance due to changes in building-component technologies. We demonstrate a low-effort retrofit analysis, providing a probabilistic estimate of energy savings for a sample building retrofit. The key advantages of this approach compared to conventional engineering models are that it provides probabilistic risk analysis based on actual
measured data and can significantly reduce transaction costs for predicting savings across a portfolio.
While the availability of “big data” about building energy performance is increasing in response to market demands and public policies, the lack of standard data formats is a significant ongoing barrier to its full utilization. To overcome this barrier, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) developed the Building Energy Data Exchange Specification (BEDES).
BEDES is designed to enable the exchange, comparison, and combination of empirical information by providing common terms and definitions for data about commercial and residential building’s physical and operational characteristics, energy use, and efficiency measures.
This paper describes the BEDES development process, scope, structure, and plans for implementation and ongoing updates.
The purpose of this handbook is to furnish guidance for planning and conducting a highperformance building charrette, sometimes called a "greening charrette." The handbook answers typical questions such as, "What is a charrette?", "Why conduct a charrette?", "What topics should we cover?", "Whom should we invite?" and "What happens after the charrette?". Owners, design team leaders, site planners, state energy office staff, and others who believe a charrette will benefit their projects will find the handbook helpful.
This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration in order to achieve aggressive energy savings in building designs. Through a case study example, we examine the ways daylighting – and daylighting simulation – drove the design of a large net-zero energy project.
It is still early in the collection and analysis of energy performance data, but it is already clear that high-performance commercial buildings—some "almost net-zero buildings"—can be constructed cost effectively, providing productive environments for occupants, reducing operating costs, and enhancing the competitiveness of commercial properties.