This Fact Sheet provides an overview of the Better Buildings Workforce Guidelines project. The Department of Energy (DOE) and the National Institute of Building Sciences (NIBS) are working with industry stakeholders to develop voluntary national guidelines that will improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs.
Advanced Search
Your search resulted in 46 resourcesSort by
The lack of empirical data on the energy performance of buildings is a key barrier to accelerating the energy efficiency retrofit market. The DOE’s Buildings Performance Database (BPD) helps address this gap by allowing users to perform exploratory analyses on an anonymous dataset of hundreds of thousands of commercial and residential buildings. These analyses enable market actors to assess energy efficiency opportunities, forecast project performance, and quantify performance risk using empirical building data. In this paper, we describe the process of collecting and preparing data for the database, and present a peer-group analysis tool that allows users to analyze building performance for narrowly defined subsets of the database, or peer groups. We use this tool to explore a case study of a multifamily portfolio owner comparing his buildings’ performance to the peer group of multifamily buildings in the local metro area. We also present a performance comparison tool that uses statistical methods to estimate the expected change in energy performance due to changes in building-component technologies. We demonstrate a low-effort retrofit analysis, providing a probabilistic estimate of energy savings for a sample building retrofit. The key advantages of this approach compared to conventional engineering models are that it provides probabilistic risk analysis based on actual
measured data and can significantly reduce transaction costs for predicting savings across a portfolio.
While the availability of “big data” about building energy performance is increasing in response to market demands and public policies, the lack of standard data formats is a significant ongoing barrier to its full utilization. To overcome this barrier, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) developed the Building Energy Data Exchange Specification (BEDES).
BEDES is designed to enable the exchange, comparison, and combination of empirical information by providing common terms and definitions for data about commercial and residential building’s physical and operational characteristics, energy use, and efficiency measures.
This paper describes the BEDES development process, scope, structure, and plans for implementation and ongoing updates.
The Smart Monitoring and Diagnostic System (SMDS) is a low-cost technology that helps building owners and managers keep rooftop air conditioner and heat pump units (RTUs) operating properly at peak efficiency. The SMDS technology has the potential to significantly benefit small commercial buildings, which predominately use RTUs for space conditioning. Through the Better Buildings Alliance, a field demonstration was conducted at four sites using two SMDS prototypes. This case study provides a summary of the field demonstration results.
The full report is available at: https://buildingdata.energy.gov/cbrd/resource/1927
Work with the buildings industry to develop and maintain data, methods, and tools to understand and improve the sustainability of buildings at a fundamental level and continue to develop and support the U.S. Life Cycle Inventory (LCI) Database, which provides the starting point for LCA.
Method for testing and diagnosing the simulation capabilities of the exterior envelope portions of building energy simulation programs. BESTEST (Building Energy Simulation TEST) evaluates design and analysis tools relative to their ability to adequately model the envelope dynamics of buildings. It has been adapted for certifying tools for Home Energy Rating Systems and by other organizations.
This sophisticated, yet easy-to-use software application trains itself to create a “smart model” of your building and compares daily energy consumption against this norm. The Energy Expert will tell you whether your facility over-consumed; under-consumed or used about the right amount of energy through a convenient email notification.
The Building Controls Virtual Test Bed (BCVTB) is a software environment that allows expert users to couple different simulation programs for co-simulation, and to couple simulation programs with actual hardware. For example, the BCVTB allows to simulate a building in EnergyPlus and the HVAC and control system in Modelica, while exchanging data between the software as they simulate. The BCVTB allows expert users of simulation to expand the capabilities of individual programs by linking them to other programs. Due to the different programs that may be involved in distributed simulation, familiarity with configuring programs is essential.
Develop a simple document and Web-based information guidebook to help commercial building software developers, energy managers, and control companies implement strategies for commercial building energy analysis and performance monitoring. This project will use the following book as a model for the design of the handbook: Builder's Guide to Mixed Climates: Details for Design and Construction by Joseph W. Lstiburek. February 2001. Taunton Press. ISBN 156158388X.