This Fact Sheet provides an overview of the Better Buildings Workforce Guidelines project. The Department of Energy (DOE) and the National Institute of Building Sciences (NIBS) are working with industry stakeholders to develop voluntary national guidelines that will improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs.
Advanced Search
Your search resulted in 52 resourcesSort by
A case study of the overview, process, and results of the re-tuning that was conducted in a building in Arlington, Virginia by Vornado Realty Trust in October 2012. Re-tuning provided the facilities management team with the ability to identify and understand building scheduling opportunities that drove significant, low-cost energy savings. Five measures were conducted, many of which pertained to the HVAC system.
The lack of empirical data on the energy performance of buildings is a key barrier to accelerating the energy efficiency retrofit market. The DOE’s Buildings Performance Database (BPD) helps address this gap by allowing users to perform exploratory analyses on an anonymous dataset of hundreds of thousands of commercial and residential buildings. These analyses enable market actors to assess energy efficiency opportunities, forecast project performance, and quantify performance risk using empirical building data. In this paper, we describe the process of collecting and preparing data for the database, and present a peer-group analysis tool that allows users to analyze building performance for narrowly defined subsets of the database, or peer groups. We use this tool to explore a case study of a multifamily portfolio owner comparing his buildings’ performance to the peer group of multifamily buildings in the local metro area. We also present a performance comparison tool that uses statistical methods to estimate the expected change in energy performance due to changes in building-component technologies. We demonstrate a low-effort retrofit analysis, providing a probabilistic estimate of energy savings for a sample building retrofit. The key advantages of this approach compared to conventional engineering models are that it provides probabilistic risk analysis based on actual
measured data and can significantly reduce transaction costs for predicting savings across a portfolio.
While the availability of “big data” about building energy performance is increasing in response to market demands and public policies, the lack of standard data formats is a significant ongoing barrier to its full utilization. To overcome this barrier, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) developed the Building Energy Data Exchange Specification (BEDES).
BEDES is designed to enable the exchange, comparison, and combination of empirical information by providing common terms and definitions for data about commercial and residential building’s physical and operational characteristics, energy use, and efficiency measures.
This paper describes the BEDES development process, scope, structure, and plans for implementation and ongoing updates.
The Smart Monitoring and Diagnostic System (SMDS) is a low-cost technology that helps building owners and managers keep rooftop air conditioner and heat pump units (RTUs) operating properly at peak efficiency. The SMDS technology has the potential to significantly benefit small commercial buildings, which predominately use RTUs for space conditioning. Through the Better Buildings Alliance, a field demonstration was conducted at four sites using two SMDS prototypes. This case study provides a summary of the field demonstration results.
The full report is available at: https://buildingdata.energy.gov/cbrd/resource/1927
7x7x7: Design Energy Water is an innovative program by the Division of the State Architect that encouraged California school districts to develop long-range master plans that reduce energy and water consumption on campuses and improve the quality of educational spaces. The State Architect engages seven architectural firms to develop seven conceptual case studies that reduce school energy and water consumption and result in better learning environments on seven different types of campuses (six K-12 schools and a community college). The seven campuses are representative of typical building types from different eras constructed across California’s varied climate zones. The purpose and primary goal of this program is to enable all existing K-14 facilities to be zero energy by 2030.
UC Davis established the Smart Lighting Initiative (SLI), an effort to reduce campus-wide lighting electricity consumption at least 60% below 2007 levels. The first phase of this program included a large-scale deployment of over 1,500 network-controlled LED streetlights, area lights, post-tops, and wall packs. The “ultra-smart” lighting installation has reduced annual energy use by an estimated 1,231,758 kWh, saving $120,909 annually in energy and maintenance costs.
An object-oriented program that allows the user to quickly build models of complex physical processes by connecting equation-based calculation modules from an object library. SPARK (Simulation Problem Analysis and Research Kernel) creates an executable simulation program from this network ready to be run.
COMCheck addresses the enforceable provisions in commercial building energy codes based on ASHRAE/IESNA Standard 90.1-1989/1999 and IECC 1998, 2000 and 2001 that are applicable to commercial and high-rise residential projects, including building envelope, lighting, HVAC, and service water heating requirements. The software is designed to streamline the energy code compliance and approval process and is focused on the needs of those who design, build, and enforce building codes for commercial and high-rise residential building projects. It is available in Windows, Mac, and Web versions.