To support the Research Support Facility's (RSF) net zero energy goals, NREL’s data center was designed to minimize energy its footprint, without compromising service quality for NREL staff. NREL’s information technology (IT) and building technologies experts were engaged throughout the design process to integrate data center needs into the RSF design. The approach relied on a whole systems design to ensure the data center would have a symbiotic relationship with building mechanical systems and operations, including staff interaction with IT systems.
Advanced Search
Your search resulted in 125 resourcesSort by
Data center energy efficiency is derived from addressing hardware equipment and infrastructure. Less than half the power used by a typical data centers powers its information technology equipment. The other half goes to support infrastructure, including cooling systems, uninterruptible power supply inefficiencies, power distribution losses, and lighting.
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
This report discusses miscellaneous electrical loads, which are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. MELs in commercial buildings account for almost 5% of U.S. primary energy consumption.
The Research Support Facility was designed with energy efficiency and sustainability in mind. Many of its innovative technologies use passive and active processes to provide energy for its operations, such as electricity, heating, and cooling. The goal of this unique office building is to reach net zero energy use by engaging staff in best energy practices.
This eight-page fact sheet helps employees moving to the RSF navigate NREL's changing landscape. This brochure provides getting up and running, building access, emergencies, shuttle service, RTD buses, parking locations, parking passes, exceptions to off-site parking, conference rooms and huddle rooms, balconies, elevators, lunchroom, quiet rooms, smoking, iGo Power Smart Tower, and supporting RSF's net zero energy mission.
This report describes the psychrometric bin analysis that was conducted for the ASHRAE recommended and allowable operating environment zones as well as a modified allowable operating environment, discusses control strategies, and presents examples of energy-efficient data centers using alternative cooling strategies.
This case study describes the National Renewable Energy Laboratory's (NREL) data center as a showcase of energy efficiency. Most of what NREL has done can be replicated by clients; however, two design approaches are climate-dependent: near-full reliance on outside air for cooling, and photovoltaic arrays for power.