To support the Research Support Facility's (RSF) net zero energy goals, NREL’s data center was designed to minimize energy its footprint, without compromising service quality for NREL staff. NREL’s information technology (IT) and building technologies experts were engaged throughout the design process to integrate data center needs into the RSF design. The approach relied on a whole systems design to ensure the data center would have a symbiotic relationship with building mechanical systems and operations, including staff interaction with IT systems.
Advanced Search
Your search resulted in 21 resourcesSort by
Data center energy efficiency is derived from addressing hardware equipment and infrastructure. Less than half the power used by a typical data centers powers its information technology equipment. The other half goes to support infrastructure, including cooling systems, uninterruptible power supply inefficiencies, power distribution losses, and lighting.
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
The Research Support Facility was designed with energy efficiency and sustainability in mind. Many of its innovative technologies use passive and active processes to provide energy for its operations, such as electricity, heating, and cooling. The goal of this unique office building is to reach net zero energy use by engaging staff in best energy practices.
This checklist packet is a team-focused guide to realizing energy savings in high-performance office buildings through carefully considered lighting and control design. The checklists should be distributed among the integrated project team, including the owner, lighting designer and engineer, commissioning agent, and facility manager, at the beginning of a project and referred to regularly during design meetings and drawing reviews.
Hines partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.
This study analyzes the market needs for building performance evaluation tools. The purpose is to identify existing gaps and provide information for the U.S. Department of Energy (DOE) to use in developing a linked set of tools for optimizing energy performance of commercial buildings over their life cycles.
This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a “standard” mid- to large-size hospital, typically at least 100,000 ft², but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).
This Fact Sheet provides an overview of the Better Buildings Workforce Guidelines project. The Department of Energy (DOE) and the National Institute of Building Sciences (NIBS) are working with industry stakeholders to develop voluntary national guidelines that will improve the quality and consistency of commercial building workforce training and certification programs for five key energy-related jobs.