Sinisa Novakovic, owner of Mishka’s café in downtown Davis, had two goals for the recent lighting upgrade in his café: create a cozy, inviting atmosphere for customers and save energy. In the main seating area alone he was able to cut his lighting energy use 85% by upgrading to LED lighting. Throughout the rest of the café, energy consumption for lighting has been cut in half, reducing Mishka’s annual energy use by over 10,000 kWh and saving Novakovic nearly $2,000 every year in energy costs. The lighting upgrade will have paid for itself after just eight months.
Advanced Search
Your search resulted in 132 resourcesSort by
Bryan Cave LLP (formerly Holme Roberts & Owen LLP, headquartered in Denver, Colorado), an international law firm, partered with the U.S Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce annual energy consumption by at least 30% versus pre-retrofit energy use as part of DOE’s Commercial Building Partnership (CBP) program.
The purpose of this handbook is to furnish guidance for planning and conducting a highperformance building charrette, sometimes called a "greening charrette." The handbook answers typical questions such as, "What is a charrette?", "Why conduct a charrette?", "What topics should we cover?", "Whom should we invite?" and "What happens after the charrette?". Owners, design team leaders, site planners, state energy office staff, and others who believe a charrette will benefit their projects will find the handbook helpful.
With aggressive goals to reduce national energy use and carbon emissions, the U.S. Department of Energy (DOE) will be looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals now needed at a national level. The New York Times Building, in New York, New York, incorporates a number of innovative technologies, systems and processes and could become model for widespread replication in new and existing buildings. A year-long monitored study was conducted to verify energy performance, assess occupant comfort and satisfaction with the indoor environment, and evaluate impact on maintenance and operations. Lessons learned were derived from the analysis; these lessons could help identify and shape policy, financial, or supporting strategies to accelerate diffusion in the commercial building market.
The Engineer Research and Development Center of the U.S. Army Corps of Engineers and the National Renewable Energy Laboratory (NREL) developed target energy budgets and design guides with a prescriptive path to achieve 30% energy savings over a baseline built to the minimum requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This project covers eight building types in 15 U.S. climate zones.
Adaptive exterior lighting is a relatively new concept recognized by the lighting industry and energy regulators as a potential method to increase energy savings in outdoor applications. Many adaptive exterior lighting products are being developed and have been introduced into the marketplace, allowing users to implement dynamic lighting designs that offer 30%–75% energy savings over traditional systems. These savings are achieved by coupling advanced lighting controls with an efficacious, dimmable source.
The Advanced Energy Design Guide for K-12 School Buildings is the second in a series of Advanced Energy Design Guide (AEDG) publications designed to provide strategies and recommendations for achieving 50% energy savings over the minimum code requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.
This guide provides user-friendly guidance for achieving a net zero energy K-12 school building. It includes a set of energy performance targets for all climate zones. Strategies on how to achieve these energy targets are provided throughout the guide and include setting measurable goals, hiring design teams committed to that goal, using energy simulation throughout the design and construction process, and being aware of how process decisions affect energy usage.
The how-to tips address specific project aspects-building and site planning, envelope, daylighting, electric lighting, plug loads, kitchens and food service, water heating, HVAC, and renewable energy generation. Each section contains multiple tips that move the design incrementally toward the zero energy goal. Case studies and technical examples show how the energy goals are achievable at typical construction budgets as well as demonstrate the technologies in real-world applications.
The intended audience of this guide includes educators, school administrators, architects, design engineers, energy modelers, contractors, facility managers, and building operations staff.
The "download" link will take you to the ASHRAE website, where you can download a free PDF of the Design Guide.
The Advanced Energy Design Guide for Medium to Big Box Retail Buildings is designed to provide recommendations to achieve 50% energy savings for retail buildings 20,000 to 100,000 ft2. Energy costs are typically the second-highest operating expense for a retailer, so use of this guide can help in creating a cost-effective design for new retail buildings and major renovations that will consume substantially less energy compared to the minimum code-compliant design and that will result in lower operating costs.