This guide primarily applies to facility managers and energy managers of large existing office buildings larger than 100,000 square feet, but also includes considerations for small and medium office buildings. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, this guide provides a practical roadmap for effectively planning and implementing performance improvements for existing buildings.
Advanced Search
Your search resulted in 20 resourcesSort by
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
This guide presents a set of 15 best practices for owners, designers, and construction teams to reach high-performance goals and maintain a competitive budget. They are based on the recent experiences of the Research Support Facility owner and design-build team, and show that achieving this outcome requires that all key integrated team members understand their opportunities to control capital costs.
Low energy or high-performance buildings form a vital component in the sustainable future of building design and construction. Rigorous integrated daylighting design and simulation will be critical to their success as energy efficiency becomes a requirement, because electric lighting usually represents a large fraction of the energy consumed. We present the process and tools used to design the lighting systems in the newest building at the National Renewable Energy Laboratory (NREL), the Research Support Facility (RSF). Daylighting had to be integrated with the electric lighting, as low energy use (50% below ASHRAE 90.1-2004) and the LEED daylight credit were contractually required, with a reach goal of being a net-zero energy building (NZEB). The oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed, as ultimately all simulation efforts had to translate to energy use intensity predictions, design responses, and preconstruction substantiation of the design. We present preliminary data from the postoccupancy monitoring efforts with an eye toward the current efficacy of energy and lighting simulation methodologies.
This guide is intended to help energy managers and finance professionals at retail companies understand how to use external financing for energy projects. An external financing mechanism exists for nearly any company’s project and risk preferences. There is external financing for big and small projects, individual or portfolio-wide. There are financing mechanisms that are very safe but limit reward, and there are some that require more risk but offer greater potential value. Facilities, operations, or sustainability managers who haven’t ever utilized external financing should explore the viability of the mechanisms described in this guide to fund future energy projects.
Other related resources available on the Retail Industry Leaders Association (RILA) website at: https://www.rila.org/sustainability/RetailEnergyManagementProgram/Pages/...
Learn how sustainability and energy projects are often well aligned with business objectives, how to think like a finance professional, and how to best team with your internal finance organization/department. Apply these learnings to case studies on project analysis and portfolio planning.
Other related financing resources from the Retail Industry Leaders Association (RILA) available at: https://www.rila.org/sustainability/RetailEnergyManagementProgram/Pages/...
Conventional information technology (IT) equipment and data center spaces can consume more than 100 times the energy of standard office spaces, so the potential for energy savings is huge. You can use this application guide to reduce your equipment energy consumption in any building with a data center, server closets, or other IT equipment (computers, printers, etc.). Some of these strategies are most effective at the beginning of the design process; others can be implemented at any time and be sequenced as part of the normal procurement and replacement schedule.
This checklist packet is a team-focused guide to realizing energy savings in high-performance office buildings through carefully considered lighting and control design. The checklists should be distributed among the integrated project team, including the owner, lighting designer and engineer, commissioning agent, and facility manager, at the beginning of a project and referred to regularly during design meetings and drawing reviews.