The Advanced Energy Retrofit Guide for K-12 Schools is one of five retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures, the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The K-12 Schools guide provides convenient and practical guidance for making cost-effective energy efficiency improvements in public, private, and parochial schools.
Advanced Search
Your search resulted in 17 resourcesSort by
It is still early in the collection and analysis of energy performance data, but it is already clear that high-performance commercial buildings—some "almost net-zero buildings"—can be constructed cost effectively, providing productive environments for occupants, reducing operating costs, and enhancing the competitiveness of commercial properties.
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
Low energy or high-performance buildings form a vital component in the sustainable future of building design and construction. Rigorous integrated daylighting design and simulation will be critical to their success as energy efficiency becomes a requirement, because electric lighting usually represents a large fraction of the energy consumed. We present the process and tools used to design the lighting systems in the newest building at the National Renewable Energy Laboratory (NREL), the Research Support Facility (RSF). Daylighting had to be integrated with the electric lighting, as low energy use (50% below ASHRAE 90.1-2004) and the LEED daylight credit were contractually required, with a reach goal of being a net-zero energy building (NZEB). The oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed, as ultimately all simulation efforts had to translate to energy use intensity predictions, design responses, and preconstruction substantiation of the design. We present preliminary data from the postoccupancy monitoring efforts with an eye toward the current efficacy of energy and lighting simulation methodologies.
Conventional information technology (IT) equipment and data center spaces can consume more than 100 times the energy of standard office spaces, so the potential for energy savings is huge. You can use this application guide to reduce your equipment energy consumption in any building with a data center, server closets, or other IT equipment (computers, printers, etc.). Some of these strategies are most effective at the beginning of the design process; others can be implemented at any time and be sequenced as part of the normal procurement and replacement schedule.
The Research Support Facility complex (RSF, RSF II, parking garage, and associated site lighting) was designed to produce more on-site renewable energy than it uses over the course of a typical weather year, when accounted for at the site. To date, the end use performance monitoring and verification suggests that when the RSF complex is fully built out, we will meet the annual energy use goals. Continued performance monitoring and occupant education are required to ensure annual energy use goals will continue to be met.