Advanced Search
Your search resulted in 8 resourcesSort by
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.
K–12 schools are ideal candidates to lead the market shift from buildings that consume energy to buildings that produce as much renewable energy as they use. There are now resources to guide owners and project teams as they make the shift to these “zero energy” buildings, notably the Advanced Energy Design Guide for K–12 School Buildings: Achieving Zero Energy (K–12 ZE AEDG).
This 10-page paper provides a concise overview of the K–12 ZE AEDG (200 pages), as well as a nice explanation of the energy modeling and analysis methodology used to create the Design Guide.
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.
This paper documents the methodology developed to identify and reduce plug and process loads (PPLs) as part of NREL's Research Support Facility's (RSF) low energy design process. PPLs, including elevators, kitchen equipment in breakrooms, and office equipment in NREL’s previously occupied office spaces were examined to determine a baseline. This, along with research into the most energy-efficient products and practices, enabled the formulation of a reduction strategy that should yield a 47% reduction in PPLs. The building owner and the design team played equally important roles in developing and implementing opportunities to reduce PPLs. Based on the work done in the RSF, a generalized multistep process has been developed for application to other buildings.