The purpose of this handbook is to furnish guidance for planning and conducting a highperformance building charrette, sometimes called a "greening charrette." The handbook answers typical questions such as, "What is a charrette?", "Why conduct a charrette?", "What topics should we cover?", "Whom should we invite?" and "What happens after the charrette?". Owners, design team leaders, site planners, state energy office staff, and others who believe a charrette will benefit their projects will find the handbook helpful.
Advanced Search
Your search resulted in 30 resourcesSort by
The BEDES Strategic Working Group Recommendations document is a guide to how the BEDES Dictionary can be brought to market and provide the services for which it was designed.
The U.S. Department of Energy created the Building Energy Data Exchange Specification (BEDES) to facilitate the exchange of information on building characteristics and energy use in an inexpensive and unambiguous manner.
The BEDES Dictionary 1.0 was developed by DOE to support the analysis of the performance of buildings by providing a common set of terms and definitions for building
characteristics, efficiency measures, and energy use.
This report outlines the technical protocol used to generate Department of Energy's Commercial Building Energy Asset Score for commercial buildings, explains the scoring methodology, and provides additional details regarding the Asset Scoring Tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.
This report presents a set of 15 best practices for owners, designers, and construction teams to reach high-performance goals and maintain a competitive budget. These best practices are based on the recent experiences of the Research Support Facility owner and design-build team for the Research Support Facility (RSF) on the National Renewable Energy Laboratory’s (NREL) campus in Golden, Colorado, and show that achieving this high performance outcomes requires that all key integrated team members understand their opportunities to control capital costs.
First costs, or capital costs, for energy efficiency strategies in office buildings are often a primary barrier to realizing high-performance buildings with 50% or greater energy savings. Historically, the industry has been unable to reach deep energy savings because of a reliance on energy cost savings and simple payback analysis alone to justify investments. A more comprehensive and integrated cost justification and capital cost control approach is needed. By implementing innovative procurement and delivery strategies, integrated design principles and cost tradeoffs, life cycle cost justifications, and streamlined construction methods, first cost barriers can be overcome. It is now possible to attain marketable, high-performance office buildings that achieve LEED Platinum and reach net zero energy goals at competitive whole building first costs, as illustrated by the U.S. Department of Energy’s and National Renewable Energy Laboratory’s latest high-performance office building, the Research Support Facility (RSF) on the National Renewable Energy Laboratory campus in Golden, Colorado.
The Western Cooling Efficiency Center (WCEC) has developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment. The WCEC has identified these conditions as indicative of western state climates. These criteria, named the Western Cooling Challenge (WCC), have been set forth as a challenge to manufacturers to improve the state-of-the-art space cooling products. The National Renewable Energy Laboratory (NREL) is to verify these criteria through laboratory testing at its heating, ventilation, and air-conditioning (HVAC) test facility in Golden, Colorado, which is uniquely suited to accurately measure the cooling performance, energy, and water use of advanced cooling systems.
This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.
NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative “cooling core.” Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. Today’s advanced indirect evaporative coolers provide powerful and efficient cooling sinks, but are fundamentally limited by the moisture content in the air.