The Advanced Energy Design Guide for Small Warehouses and Self-Storage Buildings (AEDG-WHSE; the Guide) is intended to provide a simple approach for contractors and designers who create warehouses. Application of the recommendations in the Guide should result in warehouses with 30% energy savings when compared to those same warehouses designed to the minimum requirements of ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings.
Site
Your search resulted in 11 resourcesSort by
The Advanced Energy Design Guide for Grocery Stores (AEDG-Grocery) is intended to provide a simple approach for contractors, designers, and owners to achieve 50% savings in grocery stores and other like retail that has refrigeration systems. Application of the recommendations in the Guide should result in grocery stores with 50% energy savings when compared to those same stores designed to the minimum requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. Energy Standard for Buildings Except Low-Rise Residential Buildings.
This guide provides user-friendly guidance for achieving a net zero energy K-12 school building. It includes a set of energy performance targets for all climate zones. Strategies on how to achieve these energy targets are provided throughout the guide and include setting measurable goals, hiring design teams committed to that goal, using energy simulation throughout the design and construction process, and being aware of how process decisions affect energy usage.
The how-to tips address specific project aspects-building and site planning, envelope, daylighting, electric lighting, plug loads, kitchens and food service, water heating, HVAC, and renewable energy generation. Each section contains multiple tips that move the design incrementally toward the zero energy goal. Case studies and technical examples show how the energy goals are achievable at typical construction budgets as well as demonstrate the technologies in real-world applications.
The intended audience of this guide includes educators, school administrators, architects, design engineers, energy modelers, contractors, facility managers, and building operations staff.
The "download" link will take you to the ASHRAE website, where you can download a free PDF of the Design Guide.
K–12 schools are ideal candidates to lead the market shift from buildings that consume energy to buildings that produce as much renewable energy as they use. There are now resources to guide owners and project teams as they make the shift to these “zero energy” buildings, notably the Advanced Energy Design Guide for K–12 School Buildings: Achieving Zero Energy (K–12 ZE AEDG).
This 10-page paper provides a concise overview of the K–12 ZE AEDG (200 pages), as well as a nice explanation of the energy modeling and analysis methodology used to create the Design Guide.
A look at the rise of zero energy-ready schools, and the publication guiding their future development. From the Spring 2018 issue of USGBC+.
Highlighted in the article is the Advanced Energy Design Guide for K-12 School Buildings (Zero Energy). It can be downloaded for free at: www.ashrae.org/aedg
"Zero Net Energy (ZNE) is the future, and in a growing number of places the present, of building design and energy policy. A growing strategy to get to ZNE is to separate the building’s heating/cooling from the ventilation/dehumidification. Design firms and owners are striving to meet heating, ventilation and air-conditioning (HVAC) loads with optimum comfort and minimal energy. Radiant systems can provide heating and cooling through pipes while ventilation and any humidity control requirements are efficiently met by a Dedicated Outdoor Air System (DOAS). This guide provides an overview of Radiant Heating and Cooling + DOAS systems."
It is possible for K–12 new construction projects to achieve zero energy in all climate zones throughout the continental United States. This study includes:
• Energy use intensity (EUI) targets for all climate zones (Tables 23-26) to help users set goals for their zero energy school designs.
• A pathway for how to achieve these EUIs by climate zone, including values for the building envelope, fenestration, lighting systems (including electrical lights and daylighting), HVAC systems, building automation and controls, outdoor air treatment, and SWH.
• Case studies of actual K–12 school applications which demonstrate the business case and practicality of achieving zero energy schools.
This feasibility study was developed with input and guidance from a panel of industry experts. In many ways, this feasibility study is a simple interface to a complex analysis performed using EnergyPlus energy modeling. The combination of strategies contained in a single table should help facilitate increased energy efficiency in new buildings.
This resource provides energy models from the Advanced Energy Design Guide (AEDG) for Medium to Big Box Retail Buildings that have been incorporated into Building Component Library (BCL). The AEDG series provides design guidance for buildings that use 50% less energy than those built to the requirements of the ANSI/ASHRAE/IES Standard 90.1-2004 commercial code, and are specific to prominent building types across each of the eight U.S. climate zones. More information on the AEDGs can be found at http://energy.gov/eere/buildings/advanced-energy-design-guides and http://www.ashrae.org/aedg.The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. More information about the BCL can be found at https://bcl.nrel.gov.
These models are EnergyPlus version 6.0 and were completed in 2011. A Technical Support Document (TSD) that details these models can be found at http://www.nrel.gov/docs/fy13osti/52589.pdf. This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.
This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2.
Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller
office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed an easily replicable combination of measures to achieve 50% savings in the greatest number of office buildings.
This resource provides energy models from the Advanced Energy Design Guide (AEDG) for K-12 Schools that have been incorporated into Building Component Library (BCL). The AEDG series provides design guidance for buildings that use 50% less energy than those built to the requirements of the ANSI/ASHRAE/IES Standard 90.1-2004 commercial code, and are specific to prominent building types across each of the eight U.S. climate zones. More information on the AEDGs can be found at http://energy.gov/eere/buildings/advanced-energy-design-guides and http://www.ashrae.org/aedg. The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. More information about the BCL can be found at https://bcl.nrel.gov.
These models are EnergyPlus version 7.0 and were completed in 2011. A Technical Support Document (TSD) that details these models can be found at http://www.nrel.gov/docs/fy13osti/51437.pdf. This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).