Site
Your search resulted in 23 resourcesSort by
Low energy or high-performance buildings form a vital component in the sustainable future of building design and construction. Rigorous integrated daylighting design and simulation will be critical to their success as energy efficiency becomes a requirement, because electric lighting usually represents a large fraction of the energy consumed. We present the process and tools used to design the lighting systems in the newest building at the National Renewable Energy Laboratory (NREL), the Research Support Facility (RSF). Daylighting had to be integrated with the electric lighting, as low energy use (50% below ASHRAE 90.1-2004) and the LEED daylight credit were contractually required, with a reach goal of being a net-zero energy building (NZEB). The oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed, as ultimately all simulation efforts had to translate to energy use intensity predictions, design responses, and preconstruction substantiation of the design. We present preliminary data from the postoccupancy monitoring efforts with an eye toward the current efficacy of energy and lighting simulation methodologies.
This paper illustrates the challenges of integrating rigorous daylight and electric lighting simulation data with whole-building energy models, and defends the need for such integration in order to achieve aggressive energy savings in building designs. Through a case study example, we examine the ways daylighting – and daylighting simulation – drove the design of a large net-zero energy project.
This paper reviews the novel procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners (who are also commercial building energy efficiency researchers) developed and implemented an energy performance based design-build process to procure an office building with contractual requirements to meet demand side energy and LEED goals. The key procurement steps needed to ensure achievement of the energy efficiency and ZEB goals using a replicable delivery process are outlined.
A net zero-energy community (ZEC) is one that has greatly reduced energy needs through efficiency gains such that the balance of energy for vehicles, thermal, and electrical energy within the community is met by renewable energy. Past work resulted in a common zero-energy building (ZEB) definition system of “zero energy” and a classification system for ZEBs based on the renewable energy sources used by a building. This paper begins with a focus solely on buildings and expands the concept to define a zero-energy community, applying the ZEB hierarchical renewable classification system to the concept of community. A community that offsets all of its energy use from renewables available within the community’s built environment and unusable brownfield sites is at the top of the ZEC classification system at a ZEC of A. (A brownfield site is where the redevelopment or reuse may be complicated by the presence or potential presence of a hazardous substance, pollutant or contaminant.) A community that achieves a ZEC definition primarily through the purchase of new off-site, Renewable Energy Certificates (RECs) is placed at the lowest end of the ZEC classification but is still considered a good achievement.
NREL/TP-7A2-46065