Advanced Search
Your search resulted in 23 resourcesSort by
This guide primarily applies to facility managers and energy managers of large existing office buildings larger than 100,000 square feet, but also includes considerations for small and medium office buildings. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, this guide provides a practical roadmap for effectively planning and implementing performance improvements for existing buildings.
Retail buildings in the U.S. are second only to office buildings in total energy consumption and represent approximately 13% of energy use in commercial buildings nationwide. The Advanced Energy Retrofit Guide for Retail Buildings presents general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures to provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. This guide is primarily designed for facility managers and energy managers of existing retail buildings of all sizes.
This guide was created to help healthcare facility decision-makers plan, design, and implement energy improvement projects in their facilities. It was designed with energy managers in mind, and presents practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle.
The Advanced Energy Retrofit Guide for Grocery Stores was created to help grocery store decision makers plan, design, and implement energy improvement projects in their facilities. It was designed with energy managers in mind, and presents practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle.
The Advanced Energy Retrofit Guide for K-12 Schools is one of five retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as more detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures, the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The K-12 Schools guide provides convenient and practical guidance for making cost-effective energy efficiency improvements in public, private, and parochial schools.
This paper reviews the novel procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners (who are also commercial building energy efficiency researchers) developed and implemented an energy performance based design-build process to procure an office building with contractual requirements to meet demand side energy and LEED goals. The key procurement steps needed to ensure achievement of the energy efficiency and ZEB goals using a replicable delivery process are outlined.
Low energy or high-performance buildings form a vital component in the sustainable future of building design and construction. Rigorous integrated daylighting design and simulation will be critical to their success as energy efficiency becomes a requirement, because electric lighting usually represents a large fraction of the energy consumed. We present the process and tools used to design the lighting systems in the newest building at the National Renewable Energy Laboratory (NREL), the Research Support Facility (RSF). Daylighting had to be integrated with the electric lighting, as low energy use (50% below ASHRAE 90.1-2004) and the LEED daylight credit were contractually required, with a reach goal of being a net-zero energy building (NZEB). The oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed, as ultimately all simulation efforts had to translate to energy use intensity predictions, design responses, and preconstruction substantiation of the design. We present preliminary data from the postoccupancy monitoring efforts with an eye toward the current efficacy of energy and lighting simulation methodologies.
Energy savings can be achieved in corridors and other secondary spaces with an occupancy-based adaptive lighting system. Such a system is generally composed of occupancy sensors, dimmable ballasts and a communication platform. The system automatically lowers light levels to the minimum footcandles required by safety codes during vacancy and raises light output to the recommended level for occupant comfort during occupied periods. The adaptive lighting system installed at the Latham Square office building is based on Lutron’s Energi TriPak solution, a stand-alone platform for adaptive lighting that employs cost-effective wireless control devices and programmable dimming ballasts.
The California Lighting Technology Center partnered with Finelite, Inc. and Adura Technologies to develop and demonstrate a unique, wireless task/ambient office lighting solution ideally suited for the retrofit market. The system consists of two key elements: a task/ambient lighting system and advanced, wireless lighting controls. The combination substantially reduce energy use and improves lighting quality, and provides personal lighting control for individual work spaces, and does not require additional wiring or rewiring of existing luminaries or lighting circuits. The system has three specific components: adaptive ambient lighting, light-emitting diode task lighting, and wireless controls.